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SUMMARY

Simulation codes for solving large systems of ordinary differential equations suffer from the disadvantage
that bifurcation-theoretic results about the underlying dynamical system cannot be obtained from them
easily, if at all. Bifurcation behaviour typically can be inferred only after significant computational effort,
and even then the exact location and nature of the bifurcation cannot always be determined definitively.
By incorporating relatively minor changes to an existing simulation code for the Taylor–Couette problem,
specifically, by implementing the Newton–Picard method, we have developed a computational structure
that enables us to overcome some of the inherent limitations of the simulation code and begin to
perform bifurcation-theoretic tasks. While a complete bifurcation picture was not developed, three distinct
solution branches of the Taylor–Couette problem were analysed. These branches exhibit a wide variety of
behaviours, including Hopf bifurcation points, symmetry-breaking bifurcation points, turning points and
bifurcation to motion on a torus. Unstable equilibrium and time-periodic solutions were also computed.
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1. INTRODUCTION

Consider a parameter-dependent non-linear dynamical system described by a system of ordinary
differential equations

du
dt

= f(u, �) (1)
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where u∈ RN and f : RN × R → RN . For the particular application we have in mind, Equation (1)
results from the spatial discretization of a system of time-dependent partial differential equations,
but in general this need not be the case.

One approach to obtain an understanding of this dynamical system is to perform direct time
simulation, viewing the dynamical system as an initial value problem. In this case, an initial
condition, boundary conditions and time horizon are specified. The equations are then integrated
by some suitable method over the time horizon to obtain the state of the system at the desired
time. Such a computational routine is often called a ‘time-stepper’ in the literature. By their very
nature, time-steppers are iterative, continually advancing the solution one step forward in time for
each iteration.

Much information about the dynamical system can be obtained in this way. However, as a means
of understanding equilibria and their bifurcation structure, simulation codes have drawbacks. Near
bifurcation points, the rate of convergence of the time-stepper algorithm becomes arbitrarily slow,
causing the computational expense to grow significantly. As a result, information about solution
bifurcations is usually limited to simply observing the change in the solution. The location of
any bifurcations, in terms of the parameter �, is difficult to establish with accuracy. Furthermore,
the computation of unstable solutions is impossible with a time-stepper code, since such codes
converge only to stable solutions. However, knowledge of unstable solutions is often desired to
understand more fully the system’s behaviour. These limitations of the time-stepper are due to the
fact that bifurcations, the rate of convergence and the stability of solutions are all connected to the
eigenvalues of the linearization of the problem, as is explained in Appendix A.

There are many situations, such as in industrial settings, where considerable time and effort
have been expended developing an accurate and efficient time-stepper for a given system. It would
be beneficial to be able to use a simulation code in a ‘black box’ fashion to compute unstable
solutions and bifurcation behaviour that are not otherwise obtainable from such a code.

Some progress has already been made in this direction. Tuckerman and Barkley [1] have
developed methods for transforming an existing time-stepper code of a particular form into a
bifurcation tool, although their techniques are not applicable to arbitrary time-steppers. Also
relevant is the work of Koronaki et al. [2], who have written a program that enables exist-
ing time-stepper codes that model tubular reactors to perform bifurcation studies. They use
a method called the recursive projection method (RPM), originally developed by Shroff and
Keller [3].

This paper describes the modification of an existing time-stepper code to perform bifurca-
tion analysis of the Taylor–Couette problem. While many time simulation codes for the Taylor–
Couette problem have been written, we focus on the code written by Adair [4], which we have
adapted to perform bifurcation style analysis by implementing the Newton–Picard method of Lust
et al. [5].

The organization of the paper is as follows. Section 2 gives details of the Newton–Picard
method and shows how the eigenvalue information can be used to adapt an existing time-stepper.
Details of how the eigenvalues of the linearized problem affect the performance of the time-
stepper, and how this information can be used for a bifurcation study of the dynamical system
are provided in Appendix A. In Section 3, we present the numerical method employed by Adair’s
time-stepper code for the Taylor–Couette problem. Sections 4 and 5 give implementation details of
the adapted code as well as some results of numerical experiments conducted for equilibrium and
time-periodic solutions, respectively. Finally, Section 6 summarizes our results and highlights our
conclusions.
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2. THE NEWTON–PICARD METHOD

We used the Newton–Picard method developed by Lust et al. [5–9] to adapt a Taylor–Couette time-
stepper code. The basic idea is to reformulate the fixed point iteration as a root-finding problem
to which Newton’s method can be applied. The calculation is then split into two parts. The first
part corresponds to the ‘slow’ or ‘dangerous’ modes of the problem whose solution is computed
in a small-dimensional subspace by direct matrix methods. The other (complementary) part of the
solution is found in terms of a power series approximation. We first discuss the application of the
Newton–Picard method to finding equilibrium solutions, followed by the extension to compute
time-periodic solutions.

2.1. Computing equilibrium solutions

The discretization of the time-dependent axisymmetric Navier–Stokes equations using the tech-
niques to be described in Section 3 reduces to performing an iteration of the form

un+1 =un + �tf(un, �) ≡F(un, �) (2)

and finding the fixed points of the mapping F.
The convergence of the iteration slows arbitrarily as an eigenvalue of the Jacobian matrix

approaches the unit circle in the complex plane, and it diverges if an eigenvalue lies outside the
unit circle. The Newton–Picard method overcomes these difficulties by instead finding fixed points
of F using Newton’s method to find roots of the equation r(u) ≡F(u) − u. This entails solving
the system

(M� − I )�u� =−r(u�), �= 0, 1, 2, . . . (3)

for �u�, and following this by the update

u�+1 =u� + �u�

Here, the superscript � counts the Newton iteration, and for convenience we have denoted the
Jacobian matrix Fu(u�, �) by M�.

System (3) may be large and using direct matrix methods would be costly. The ingenuity of the
Newton–Picard method lies in using direct methods to solve only a small-dimensional problem
in a subspace of RN . This subspace is the invariant subspace of RN which corresponds to the
slowly decaying or non-decaying modes of the Jacobian matrix Fu(u∗, �), i.e. the subspace spanned
by the (generalized) eigenvectors of the Jacobian matrix corresponding to the largest eigenvalues
in modulus. A projected iteration is used instead of direct methods in the orthogonal complement
of this low-dimensional subspace.

More precisely, let u∗ be an isolated solution of r(u) = 0, and let B be a small neighbourhood of
u∗. Let M(u) =Fu(u, �) for u∈B and denote its eigenvalues by �1, . . . , �N , ordered by decreasing
modulus and repeated according to multiplicity. Let �>0 be a small, user-defined number, and
assume that for every u∈B, precisely p eigenvalues of M(u) lie outside the circle of radius 1− �
in the complex plane. Assume further that no eigenvalue has modulus equal to 1 − �. Hence, for
every u∈B, we have

|�1|�|�2|� · · · �|�p|>1 − �>|�p+1|� · · · �|�N |
Lust points out [6] that this assumption is typically observed in practice.
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Let P denote the p-dimensional invariant subspace of the Jacobian M(u) corresponding to the
eigenvalues �1, . . . , �p. Let Vp be an N × p real matrix whose columns form an orthonormal basis

for P. Next, let Q=P⊥ and suppose that Vq is a real N × (N − p) matrix whose columns form
an orthonormal basis for Q. Let P = VpV T

p and Q = VqV T
q = I − P be orthogonal projectors of

RN onto P and Q, respectively. This gives the direct sum decomposition RN =P⊕Q, and hence
each u∈ RN can be written uniquely as

u= Pu + Qu

where Pu∈P and Qu∈Q. It will often be convenient to work with local coordinates in P and
Q. Utilizing the matrices Vp and Vq , we change coordinates by setting

p̄= V T
p u∈ Rp, q̄= V T

q u∈ RN−p

from which we have u= Vpp̄ + Vq q̄. Similarly, we can write �u= Vp�p̄ + Vq�q̄. Substituting
this decomposition into the Newton’s method equation (3) and multiplying by [Vq Vp]T yields the
system ⎡

⎣V T
q (M� − I )Vq 0

V T
p M

�Vq V T
p (M� − I )Vp

⎤
⎦
[

�q̄�

�p̄�

]
=−

⎡
⎣V T

q r(u
�)

V T
p r(u

�)

⎤
⎦ (4)

Here we have used the fact that V T
p Vq = 0 and V T

q Vp = 0 since P and Q are orthogonal, and
that V T

q M�Vp = 0 since P is an invariant subspace of M�. Note that system (4) is block lower
triangular. Thus, we can solve for �q̄� first and use this value in the resulting equation to find
�p̄�. Then, we get

p̄�+1 = p̄� + �p̄�

q̄�+1 = q̄� + �q̄�

and hence

u�+1 = Vpp̄�+1 + Vq q̄�+1

2.1.1. Solution of �q̄�. From (4), the system that determines �q̄� is

(V T
q M�Vq − I )�q̄� = −V T

q r(u
�) (5)

Hereafter, we refer to system (5) as the Q-equations. This is a large system that we wish to avoid
solving directly. Since the spectral radius of V T

q M�Vq is less than one by construction, we know

that the Neumann series for (V T
q M�Vq − I )−1 is convergent, and hence

(V T
q M�Vq − I )−1 = −

∞∑
k=0

(V T
q M�Vq)

k (6)

We approximate this series by taking the first � terms to get

�q̄� ≈
�−1∑
k=0

(V T
q M�Vq)

kV T
q r(u

�)
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This series expansion can be viewed as the following iteration:

�q̄[0] = 0

�q̄[k] = V T
q MVq�q̄[k−1] + V T

q r, k = 1, . . . , �
(7)

and then setting �q̄� = �q̄[�]. Note that in (7) we have used the superscripts [k] to count the iteration
number, not the Newton step number of (4). Multiplying (7) by Vq and using Vq q̄=q∈ RN yields
the Picard iteration

�q[0] = 0

�q[k] = QM�q[k−1] + Qr, k = 1, . . . , �

�q� = �q[�]
(8)

Since Q = I − P = I −VpV T
p , we need only to use the small matrix Vp when executing (8). In fact,

for numerical stability the matrix Vp is not used directly, rather the projection onto Q is performed
via a modified Gram–Schmidt method (without normalization). Rather than using a fixed number
� of iterations, we chose to iterate until the norm of the residual

‖QM�q + Qr − �q‖
falls below a user-defined tolerance.

If �>1, then each iteration requires the evaluation of the matrix–vector product M��q, where
M� is the Jacobian matrix Fu(u�, �). Such a matrix–vector product can be approximated by the
finite difference (9). If v is any vector of the appropriate dimension, the matrix–vector product
Fu(u, �)v is approximated by

Fu(u, �)v≈ F(u + εv, �) − F(u, �)

ε
(9)

where ε is determined by the user. Using this approximation requires two calls to the time-stepper
code for each iteration, an additional cost associated with using the iteration (8) with ��2 that is
not present in the � = 1 case.

2.1.2. Solution of �p̄�. The system of equations that defines �p̄� can be written as

V T
p (M� − I )Vp�p̄� = −V T

p r(u
�) − V T

p M
�Vq�q̄� (10)

which we will hereafter refer to as the P-equations. Note that the updated value of �q̄� appears
on the right-hand side of this equation. Since the P-equations (10) form a small (p-dimensional)
system, we can solve for �p̄� using any method. However, system (10) is singular at bifurcation
and fold points, and is very ill-conditioned near these points. For these reasons, we solve (10) by
using a least-squares method based on the singular value decomposition (SVD), which has the
advantage of being numerically stable [10].

2.1.3. Computing a basis of P. As the parameter � is varied, the solution u∗ changes as do the
eigenvalues of the Jacobian matrix. If some eigenvalues move closer to the boundary of the unit
circle in the complex plane and move outside the circle of radius 1− �, then the dimension of the
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invariant subspace P will need to be increased. The Newton–Picard method continually monitors
these eigenvalues and builds a basis for P appropriately. It is also possible that some eigenvalues,
originally outside the circle of radius 1− �, move inside that circle as � is varied. In this case the
dimension of P should be decreased.

2.2. Computing time-periodic solutions

We now turn to computing time-periodic solutions of

du
dt

= f(u, �) (11)

where we assume that f is autonomous. This assumption implies that a periodic solution of the
system is entirely determined by the initial condition u(0) =u0 and the period of the solution,
which we denote by T .

Note that if u(t) is a periodic solution of (11), then so is u(t + �) for any � ∈ R. Hence, there
is a non-uniqueness associated with periodic solutions, and any point of the orbit can be used
as the point at time t = 0. We are free to choose this point by introducing an auxiliary equation
�(u0, T ) = 0, which is called a phase condition. Examples of phase conditions used in practice
can be found in [11]. Hence, a periodic solution can be found by solving the two-point boundary
value problem

du
dt

= f(u, �)

dT

dt
= 0

u(T ) = u0

�(u0, T ) = 0

(12)

Let /(u0, t) denote the flow function, that is, the solution of the initial value problem (11) at
time t for a given initial condition u0. This solution / is found by the time-stepper code, stepping
forward in time until time t is reached. A standard technique to solve the two-point boundary
value problem (12) is to use a shooting approach, which involves using Newton’s method to solve
the system

r(u0, T ) ≡/(u0, T ) − u0 = 0

�(u0, T ) = 0
(13)

In particular, at each Newton iteration we solve the system[
M� − I /�

T

��
u ��

T

][
�u�

0

�T �

]
=−

[
r(u�

0, T
�)

�(u�
0, T

�)

]
(14)

and then set

u�+1
0 = u�

0 + �u�
0

T �+1 = T � + �T �
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As before, the superscript � counts the Newton iterations, the matrix M is the Jacobian d//du=Gu,
and all derivatives in (14) are evaluated at (u�

0, T
�). As in the equilibrium case, we can approximate

the action of M� on a vector v by a finite difference

M�v≈ /(u�
0 + εv, T �) − /(u�

0, T
�)

ε

This evaluation of M�v will require 2k calls to the time-stepper code, where k is the number of time
steps required to integrate over a single period, starting with slightly different initial conditions.
Since /(u0, t) solves du/dt = f(u) by definition, we conclude that

/�
T = f(/(u�

0, T
�))

The evaluation of the two derivatives ��
u and ��

T depends on the form of the phase condition
�(u0, T ) used.

Rather than solving system (14) directly, which is expensive when N is large, we apply the
Newton–Picard method. Our assumptions are analogous to those of the equilibrium case. Let
(u∗

0, T
∗) be an isolated solution of (13), let B be a small neighbourhood of (u∗

0, T
∗), and let

M(u0, T ) =/u(u0, T ) for (u0, T ) ∈B. Denote the eigenvalues of M by �i , i = 1, . . . , N , and
assume that for all (u0, T ) ∈B precisely p eigenvalues lie outside the circle of radius 1 − � for
some small �>0. As in the equilibrium case, the parameter � is determined by the user.

As before, letP denote the invariant subspace of M spanned by the eigenvectors and generalized
eigenvectors of M which correspond to the eigenvalues which lie outside the circle of radius
1 − �. Let Vp be an orthogonal matrix whose columns span P; the orthogonal projector onto
P is given by P = VpV T

p . Also, let Q=P⊥ with orthonormal basis Vq and orthogonal projector

Q = VqV T
q = I − P . For �u0 ∈ RN , this yields the unique decomposition

�u0 = Vp�p̄ + Vq�q̄ where �p̄∈ Rp and �q̄∈ RN−p

Substituting this decomposition into system (14) and multiplying the first N equations by [Vq Vp]T,
we obtain the system⎡

⎢⎢⎢⎣
V T
q (M� − I )Vq 0 V T

q /
�
T

V T
p M

�Vq V T
p (M� − I )Vp V T

p /
�
T

��
uVq ��

uVp ��
T

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

�q̄�

�p̄�

�T �

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎢⎣
V T
q r(u

�
0, T

�)

V T
p r(u

�
0, T

�)

�(u�
0, T

�)

⎤
⎥⎥⎥⎦ (15)

As in the equilibrium case, we have used the fact that V T
p Vq = 0 and V T

q Vp = V T
q M�Vp = 0. Once

�q̄�, �p̄� and �T � have been found, we set

u�+1
0 = u�

0 + Vp�p̄� + Vq�q̄�

T �+1 = T � + �T �

The vector

b∗ ≡ �/
�T

∣∣∣∣
(u∗

0,T
∗)
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is an eigenvector of the Monodromy matrix M(u∗
0, T

∗) corresponding to the eigenvalue 1 [6].
Hence, b∗ ∈P by our assumption above, which implies that V T

q b
∗ = 0. Thus, the term V T

q /
�
T

appearing in Equation (15) is usually quite small and converges to zero as the Newton iteration
converges. Lust et al., therefore neglect this term, and so will we.

With this simplification, the solution of (15) is computed as in the equilibrium case. We first
solve

V T
q (M� − I )Vq�q̄� = −V T

q r(u
�
0, T

�)

for �q̄� via an iteration based on the Neumann series expansion for [V T
q (M� − I )Vq ]−1. Next,

�p̄� and �T � are found by directly solving the small system[
V T
p (M� − I )Vp V T

p /
�
T

��
uVp ��

T

][
�p̄�

�T �

]
= −

[
V T
p [r(u�

0, T
�) + M�Vq�q̄�]

�(u�
0, T

�) + ��
uVq�q̄

�

]
(16)

The basis Vp is computed in precisely the same way as in the equilibrium case.

3. THE UNDERLYING TIME-STEPPER CODE

The time-stepper we adapted is a code to simulate Taylor–Couette flow written by Ron Adair [4],
which he named TAY. The Taylor–Couette problem concerns the flow of an incompressible fluid
confined to the annular region between two concentric cylinders and driven by the rotation of
one or both of the cylinders. The problem has been studied extensively and is one of the classic
problems of hydrodynamic stability.

3.1. Governing equations and numerical method

The Navier–Stokes equations describe the flow of a viscous incompressible fluid. Let the radii of
the inner and outer cylinders be r1 and r2, respectively, and the angular velocities of the inner
and outer cylinders be �1 and �2, respectively. The Navier–Stokes equations may be written
in non-dimensional form by choosing the characteristic length to be the gap width d = r2 − r1,
the characteristic velocity to be the velocity of the inner cylinder r1�1. In order to simplify the
explanation of the Chorin–Temam projection scheme, rather than let these characteristic length
and velocity scales implicitly define the length scale, we define the diffusive time scale d2/� which
means that the Reynolds number multiplies the convective terms only in the non-dimensionalized
Navier–Stokes equations below. The reference pressure scale is ��r1�1/d , where � denotes the
viscosity of the fluid and � the (constant) density. We define the inner and outer Reynolds numbers
to be

Ri = r1�1d

�
and Ro = r2�2d

�

respectively, and the geometric parameters, radius ratio � = r1/r2, aspect ratio � = h/d , where h
is the height of the cylinders and 	= r1/d .

The TAY code is capable of computing fully three-dimensional flows in the Taylor–Couette
problem. For our adapted code, however, we focused on those flows which are axisymmetric. We
were therefore unable to compute bifurcations that broke this invariance property. However, fully 3D
computations in the parameter regions studied here detected only axisymmetric flows, supporting
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our decision to make this restriction. Let (u, v, w) denote the non-dimensional radial, azimuthal
and axial velocities, respectively, and let p denote the pressure. Using the non-dimensionalization
defined above, the axisymmetric Navier–Stokes equations in cylindrical coordinates, are

�u
�t

= �2u
�r2

+ 1

(r + 	)

�u
�r

+ �2u
�z2

− u

(r + 	)2
− Ri

(
u

�u
�r

+ w
�u
�z

− v2

(r + 	)

)
− �p

�r
(17)

�v

�t
= �2v

�r2
+ 1

(r + 	)

�v

�r
+ �2v

�z2
− v

r2
− Ri

(
u

�v

�r
+ w

�v

�z
+ uv

(r + 	)

)
(18)

�w

�t
= �2w

�r2
+ 1

(r + 	)

�w

�r
+ �2w

�z2
− Ri

(
u

�w

�r
+ w

�w

�z

)
− �p

�z
(19)

�u
�r

+ u

(r + 	)
+ �w

�z
= 0 (20)

which were solved in the domain �= {(r, z) : 0�r�1, 0�z��}. The ends of the cylinders were
fixed, and no-slip velocity boundary conditions are imposed at the ends and at the cylindrical
walls.

Finite differences, specifically centred differences, were used to approximate all spatial deriva-
tives, while the Chorin–Témam projection scheme [12, 13] was used to implement the temporal
discretization. Our development here follows [14]. The time derivatives were approximated by first
order finite differences, so that at time step n + 1 (that is, at time t = (n + 1)�t), we used the
approximation

(
�u
�t

)n+1

≈ un+1 − un

�t

and similarly for the derivatives �v/�t and �w/�t . The Chorin–Témam scheme evaluates all
velocities appearing on the right-hand side of (17)–(19) at time step n, while the pressure terms
are evaluated at time step n + 1. If we let

Fn
1 = un+�t

[
�2un

�r2
+ 1

(r+	)

�un

�r
+�2un

�z2
− un

(r+	)2
−Ri

(
un

�un

�r
+wn �un

�z
− (vn)2

(r+	)

)]

Fn
2 = vn+�t

[
�2vn

�r2
+ 1

(r+	)

�vn

�r
+�2vn

�z2
− vn

(r+	)2
−Ri

(
un

�vn

�r
+wn �vn

�z
+ unvn

(r+	)

)]

Fn
3 = wn+�t

[
�2wn

�r2
+ 1

(r+	)

�wn

�r
+�2wn

�z2
−Ri

(
un

�wn

�r
+wn �wn

�z

)]
(21)
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then Equations (17)–(19) are completely discretized as

un+1 = Fn
1 − �t

�pn+1

�r

vn+1 = Fn
2

wn+1 = Fn
3 − �t

�pn+1

�z

(22)

To determine the pressure, the continuity equation (20) is evaluated at time step n+1. Substituting
(22) into (20), we obtain

0= �un+1

�r
+ un+1

(r + 	)
+ �wn+1

�z

= �
�r

(
Fn
1 − �t

�pn+1

�r

)
+ 1

(r + 	)

(
Fn
1 − �t

�pn+1

�r

)
+ �

�z

(
Fn
3 − �t

�pn+1

�z

)

and hence,

�2 pn+1

�r2
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(23)

We recognize this last equation as a Poisson equation in cylindrical coordinates for the pressure
pn+1. It ensures that the velocity field is divergence free. On the boundary we use the numerical
boundary condition for the pressure given by [12]. The TAY code solves (23) along with the
boundary condition iteratively by the Gauss–Seidel method. Once the pressure pn+1 is known, it
is used in (22) to compute the velocity field at time step n + 1.

Let x= (u, v,w) ∈ RN . The Chorin projection scheme, as part of its solution algorithm, enforces
the condition that x have zero (discrete) divergence. We therefore consider the Chorin–Temam
projection scheme applied to the spatially discretized axisymmetric Navier–Stokes equations as a
fixed point iteration of the form

dx
dt

= f(x), x∈ RN
sol (24)

where x∈ RN
sol are discretely divergence free. We apply the Newton–Picard method to this iteration.

In terms of time-stepping, the TAY code is an iteration of the form

xn+1 = xn + �t f(xn) ≡F(xn), n = 0, 1, . . . (25)

The map F is the discrete solution operator over one time step, integrating the Navier–Stokes
equations forward in time by �t . The domain of F is the subspace of RN

sol consisting of those
vectors with zero (discrete) divergence. If xn is not divergence free, as may happen, for example,
during the course of the eigenvalue calculation when the action of the Jacobian matrix on an arbitrary
given vector is to be determined by differencing, the result xn+1 is none-the-less divergence free.
This may have reduced the efficiency of the implicitly restarted Arnoldi procedure used in the
calculation of a basis for P.
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4. NUMERICAL RESULTS FOR EQUILIBRIUM SOLUTIONS

4.1. Implementation details

Several implementation issues had to be addressed before the Newton–Picard method could be
used to adapt the TAY code successfully and to produce a working bifurcation code. First, note
that the Chorin–Témam scheme is a mapping of the velocity field only. The pressure term is
dependent only on the velocity field at the previous time step and not on any previous pressure
values. Thus, the time-stepper is properly viewed as the mapping F : (u, v, w)sol → (u, v, w)sol
where (u, v, w)sol are discretely divergence free rather than F : (u, v, w, p) → (u, v, w, p).

The Jacobian matrix Fu is most properly the projection of the matrix Fu into the divergence-free
subspace RN

sol. There are three different techniques for linearizing the map F.

(1) Explicitly constructing the Jacobian matrix by differencing; i.e. approximating the i th column
of Fu by

[Fu]i ≈ F(u + 
ei ) − F(u)




for some small 
>0. Note F(u + 
ei ) will be divergence free by construction.
(2) Finite differences may also be used as in Equation (9) to approximate the multiplicative

action of the Jacobian on a vector v, i.e.

[Fu]v≈ F(u + 
 v) − F(u)




Note that this is discretely divergence free even if v is not.
(3) The multiplicative action of the Jacobian matrix may also be approximated by solving the

linearized Navier–Stokes equations directly using numerical methods that are consistent with
those used for the non-linear problem.

One must decide which of these three options is optimal under the given circumstances. For
testing purposes, we implemented all three (see below), but for final computations, finite differences
(9) were used.

The TAY code uses the iterative Gauss–Seidel method to solve the Poisson equation (23) for the
pressure terms. Upon discretization of the pressure and velocities, solving this equation amounts
to solving a matrix equation. For a fixed cylinder geometry, the matrix of coefficients is always
the same, regardless of the inner or outer Reynolds numbers. Rather than using the existing
Gauss–Seidel solver in TAY, we instead utilized a matrix inverse to solve the discrete Poisson
equation for the pressure. Solving the Poisson equation (23) then amounts to a simple matrix–
vector multiplication, which can be performed efficiently using BLAS routines.

The software package ARPACK [15] was used in our adapted code to compute the dominant
eigenvalues of the Jacobian matrix and the corresponding Schur vectors used as a basis for the
dominant invariant subspace.

Finally, because the TAY code uses the explicit Euler scheme to approximate the time derivative
along with centred differences for the convective term, a small time step increment �t was required.
Our numerical experiments typically used �t = 0.00005. Such a small value of �t introduces unin-
tended consequences into the program. As discussed in Appendix A, the eigenvalues {�k} of Fu are
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Figure 1. Eigenvalue clustering near 1 in the complex plane.

related to those {�k} of fu by

�k = 1 + �t�k, k = 1, 2, . . . , N

When �t is very small, this causes the eigenvalues of Fu to be highly clustered near 1. Typically,
over half of the eigenvalues have modulus greater than 0.99. Figure 1 shows a representative plot
of the entire spectrum of the Jacobian matrix, plotted in the complex plane, where the clustering
near 1 is evident.

There are several consequences of this eigenvalue clustering. Firstly, it increases the cost of
the eigenvalue calculations in ARPACK, since Arnoldi methods are better suited for computing
well-separated eigenvalues. A fixed basis size was used for the invariant subspace P rather than
dynamically adapting the size of the basis as originally proposed in the Newton–Picard method.
Secondly, the Neumann series (6) converges quite slowly since the spectral radius of V T

q MVq − I is
still very close to 1. Finally, the clustering makes the matrix V T

q MVq − I very poorly conditioned.
Since the value of �q is used on the right-hand side of the P-equations (10), this ill-conditioning
requires that the Q-equations (5) be solved very accurately, typically two or three orders of
magnitude more accurately than the overall solution. We chose to use a simplified Newton’s
method, where the Jacobian matrix was fixed at the beginning of the iterations and only updated
if the norm of the increment �u increased.

4.2. Verification

As mentioned above, three different methods can be used to linearize F. All three methods were
used to verify the eigenvalue calculations and all three gave results that agreed to within the
error tolerance. Further eigenvalue verification was made using MATLAB on the entire explicitly
constructed Jacobian.

Stable equilibrium solutions computed with our adapted code were compared with those obtained
directly from the TAY code. Typical results are summarized in Table I, where a convergence
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Table I. Comparison of Newton–Picard solutions and those directly from the TAY code.

(Ri, Ro) (�,�) r × z grid Residual norm Solution difference norm

(300,−81) (0.615, 2.4) 11× 25 8.4× 10−9 1.55× 10−5

(300,−88) (0.615, 2.4) 11× 25 2.0× 10−9 2.46× 10−5

(122, 0) (0.5, 1.0) 21× 21 1.34× 10−9 1.36× 10−6

(258, 0) (0.7, 0.7) 21× 15 2.65× 10−10 3.59× 10−6

tolerance of 10−5 was used. The first column gives the particular Reynolds numbers used and the
second column gives the geometric parameters of the problem. The third column gives the spatial
r z-discretization grid used. The fourth column gives the value of ‖F(u) − u‖, which represents
how close the computed solution is to being a fixed point of the map F. The last column indicates
the norm of the difference of the solution computed by the adapted code and the corresponding
solution computed from TAY. All norms are sup-norms.

Finally, bifurcation results obtained by the adapted code were compared with those that appear
in Mullin et al. [16] and in Schulz et al. [17]. The locations of the bifurcation points computed
by our adapted code compared favourably with their results.

4.3. Numerical results

In the numerical experiments performed with the adapted code, the inner and outer Reynolds
numbers played the role of the bifurcation parameter � in all of the experiments. Only one of them
was allowed to change at a time. A typical numerical experiment with the code was performed
as follows. An initial solution was generated using the TAY code, and sufficient time allowed to
ensure that the solution reached equilibrium. Next, one of the Reynolds numbers was changed
slightly, usually by 1 or 2%. The initial solution was used as the starting guess for the adapted
code to compute the solution at the new Reynolds number. This process was repeated, changing
one of the Reynolds numbers slightly and using the previously computed solution as the starting
guess for the new Reynolds number. Keller’s pseudo-arclength continuation method [18] was used
to traverse turning points.

In all of the numerical experimental results presented in this chapter, the aspect ratio was fixed
at 2.4 and the radius ratio was 0.615. The inner Reynolds number was held constant at Ri = 300
(except for one experiment noted below), while the outer Reynolds number was varied over the
interval −320�Ro�0. The time step increment was fixed at �t = 0.00005. A Newton iteration
convergence tolerance of 10−5 was used, and the size of the basis of the invariant subspace P was
chosen to be 15. The complete bifurcation structure is not given here.

4.3.1. Four-cell flows. The behaviour of four-cell flows in this region of parameter space is ex-
tremely complicated and has confounded a complete description. A stable, steady symmetric four-
cell flow was established at Ri = 300, Ro =−320 using a spatial discretization of �r = �z = 0.1.
This solution was not established by a quasi-static increase in Reynolds numbers, but rather by
starting the time integration with a given set of initial conditions. Figure 2 is a representative
velocity cross-section plot of this symmetric four-cell solution.

Increasing Ro from −320, a single real eigenvalue of the Jacobian matrix became equal to 1 at
Ro =−189, indicating that the symmetric four-cell solution loses stability at that point. In the
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Figure 2. Symmetric four-cell Taylor vortex flow velocity cross-section.

absence of symmetry or other invariance property, an eigenvalue of unity generically indicates a
turning point. Because the four-cell flow possesses a reflectional symmetry about the midplane, it
is also possible for a symmetry-breaking bifurcation to occur at Ro = −189. Figure 3 shows the
stable solution Ro =−180. A close inspection reveals that this solution, although still possessing
four cells is asymmetric, the slight asymmetry being most visible near the midplane z = 1.2. The
asymmetry is quite subtle at first, and even far from the bifurcation point it is not readily apparent
to the naked eye. This illustrates one of the pitfalls of direct simulation codes: visual inspection
of plots may fail to identify some bifurcation points.

For parameter values Ro>−189, there are two solution branches to follow. Increasing
Ro from −189 to −100 along the stable asymmetric four-cell branch emanating from the
symmetry-breaking bifurcation point showed no further bifurcation points, the asymmetry sim-
ply became more pronounced. At Ro =−99.25, our code detected a turning point, and that the
asymmetric four-cell solution lost stability as the turning point was traversed.

Similarly, there were no bifurcation points along the branch of unstable symmetric four-cell
flows as Ro was increased Ro =−189, until a turning point was detected at Ro =−34.1.

4.3.2. Three-cell flows. Three-cell flows arise as disconnected branches of solutions in this
apparatus, and as such they cannot be obtained by quasi-static increase in the rotation rates of
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Figure 3. Asymmetric four-cell Taylor vortex flow velocity cross-section.

the inner and outer cylinder, but must be obtained through special choices of the initial conditions.
Once a three-cell flow was established by these means at Ri = 300, Ro = −85 it was used as
the starting solution for another limited set of numerical experiments. A spatial discretization of
�r =�z = 0.05 was used for these calculations.

On increasing the outer Reynolds number from −85, our code detected a turning point near
Ro = 1. Fixing Ro = 0 and decreasing the inner Reynolds number from Ri = 300, we found another
turning point at Ri = 295.4. The location of these two turning points compares favourably with
a more extensive independent numerical investigation of the three-cell conducted with the finite-
element code ENTWIFE [19]. The small differences were assumed to be due to the different spatial
discretizations employed in the two codes.

5. RESULTS FOR TIME-PERIODIC SOLUTIONS

5.1. Implementation details

The adapted code is also capable of computing time-periodic solutions and bifurcations along
branches of those solutions. All of the previous implementation issues apply, but there are two
additional considerations which arise for time-periodic solutions.
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First, the multiplicative action of the Monodromy matrix is approximated by a finite difference
of the form

Mv≈ /(u0 + εv, T �) − /(u0, T �)

ε
(26)

Unlike the equilibrium case, where evaluating the finite difference requires only two calls to the
time-stepper map F, evaluating the right-hand side of (26) requires integrating over the entire
periodic orbit. Since typically we performed computations using �t = 0.00005, several thousand
applications of the time-stepper map F were required to approximate Mv. Thus, time-periodic
solutions were much more computationally expensive than equilibrium solutions.

Secondly, a phase condition is required to fix the point at time t = 0, since any point on the
periodic orbit can be used as the starting point. Rather than using an explicit phase condition of
the form �(u0, T ) = 0 and solving Equation (16), we instead implicitly imposed a phase condition
by solving the under-determined system

[V T
p (M� − I )Vp V T

p /
�
T ]
[

�p̄�

�T �

]
= −[V T

p [r(u�
0, T

�) + M�Vq�q̄�]] (27)

by a least-squares method, utilizing LAPACK routines which solve the least squares problem using
the SVD of the matrix. The least squares solution returned is the one with minimal norm, and it is
this imposition of minimal Euclidean norm that implicitly determines a phase condition. See Lust
[6] for more details on how this condition is close to an optimal one.

5.2. Verification

As in the equilibrium case, the cylinder geometry � = 0.615, � = 2.4 and a spatial discretization
�r =�z = 0.1 was used to verify the adapted code’s ability to calculate the period of a time-
periodic solution. For this cylinder geometry, the solution at (Ri, Ro) = (300,−91) is periodic.
We can observe this from the time series plots (generated by TAY) of the azimuthal velocity at
one particular gridpoint, in this case at (r, �, z) = (0.3, 0, 1.1). The time series plot is given in
Figure 4, and from this we estimate that the period is approximately 0.133, in terms of non-
dimensional time units.

To compute the period of this solution using the Newton–Picard method, the solution from
TAY at an arbitrary time was used as the starting solution. The period computed by the adapted
code is 0.132, consistent with the period derived from the time series plot. Note that because of
the implicit phase condition, the solution vector returned by the adapted code will generally be
different from the starting solution vector, and thus a direct comparison between solution vectors
was not made, unlike the equilibrium case.

5.3. Numerical results

Numerical experiments for time-periodic solutions were conducted using the same geometric
parameters and error tolerances as the equilibrium solution experiments. In particular, we studied a
Taylor–Couette geometry with radius ratio � = 0.615 and aspect ratio � = 2.4 on a finite difference
grid with �r =�z = 0.1.
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Figure 4. Azimuthal velocity time series plot at gridpoint (r, z)= (0.3, 1.1)
for the solution at Ri = 300, Ro =−91.

We began with a flow observed at Ri = 300, Ro = −80, which is a stable, steady two-cell Taylor
vortex flow. Like the four-cell flows before, this two-cell flow is symmetric about the midplane. As
the value of Ro was decreased from −80 to −91, a Hopf bifurcation was detected at Ro =−90.6.
A complex conjugate pair of eigenvalues crossed the line 
e(z)= 1 and the branch of steady
two-cell Taylor vortex flows lost stability to a branch of time-periodic solutions.

As described above, the period of the solution at Ro = −91 was computed to be 0.132, which
is consistent with the period calculated by examining a time series plot produced by the original
simulation code. The initial period of solutions along the time-periodic branch is related to the
imaginary part of the complex conjugate eigenpair at the Hopf bifurcation point [20], and an initial
period of 0.132 was predicted, again in very close agreement with our results.

The code ENTWIFE was again used for the purposes of verification. In this instance the code
ENTWIFE also detected a Hopf bifurcation point along this branch of two-cell flows, but at a
slightly different outer Reynolds number, specifically at Ro = −98.5. This represents an 8.7%
relative difference between our results and those of ENTWIFE, which difference was believed to
be due to the different spatial resolution of the flow in the two codes.

Following this branch of time-periodic solutions, we found that a complex conjugate pair of
Floquet multipliers crosses the unit circle at approximately Ro = −92.5. This implies that there
is a bifurcation to motion on a torus, and that the time-periodic solution branch loses stability to
a branch of time-dependent solutions with two incommensurate frequencies. Because the time-
dependent solution branch emanating from the torus bifurcation point is stable, we could use the
TAY code to obtain more information about it. Figure 5 shows a time series plot of the azimuthal
velocity at a fixed gridpoint for Ro = −94, just beyond the bifurcation point. It is clear the solution
is no longer simply periodic. It is difficult to discern by visual inspection how many independent
frequencies appear in Figure 5. Applying a discrete Fourier transform to the data, using 560 data
points, we obtained the power spectrum pictured in Figure 6. It is evident that there are two
well-defined peaks, indicating two frequencies and confirming the torus bifurcation.
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Figure 5. Azimuthal velocity time series plot at gridpoint (r, z)= (0.3, 1.1) for the solution at Ro =−93.
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Figure 6. Power spectrum via finite Fourier transform of the time series plot in Figure 5.

The adapted code cannot follow the branch of solutions emanating from the torus bifurcation
point; it only can detect when this bifurcation occurs. The reason is that the solutions are not truly
time-periodic (in exact arithmetic), and the Newton–Picard method is only applicable to periodic
or equilibrium solutions.

We instead can follow the branch of unstable time-periodic solutions, something that, to our
knowledge, no other Taylor–Couette code is able to do. Further decreasing the outer Reynolds
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number, we compute that a single real Floquet multiplier crosses the unit circle through −1 at
Ro ≈ − 95.6. This indicates that the unstable time-periodic solution undergoes a period-doubling
bifurcation, resulting in an unstable time-periodic solution with twice the period.

6. CONCLUSIONS

The Newton–Picard and related methods have been proposed as computational wrappers around
existing time-stepper codes, which can treat the time-stepper code as a black-box about which
little needs to be known [3, 6]. The main goal of this work was to test this claim for a large-scale
application when the time-stepper solves a partial differential equation. We conclude, in the case
of the TAY time-stepper code which solves the Navier–Stokes equations in cylindrical coordinates,
that this is not quite the case.

When implemented as a true black-box wrapper, early versions of the code calculated spurious
eigenvalues of large modulus resulting in an incorrect basis for the invariant subspace P and
the algorithm to fail to converge. It was only through a complete understanding of the numerical
method implemented within the TAY code that we were able to determine the cause of these spurious
eigenvalues. In general when using a true black-box time-stepper, such intimate knowledge is either
unobtainable or difficult to extract.

Once the eigenvalue calculations were corrected, the resulting program was too slow to make a
practical bifurcation code. Segments of the TAY solver routine, in particular the Poisson equation
solver, were rewritten in order to increase the speed of the code. The resulting adapted program
cannot therefore be considered to be a true wrap-around of the TAY code. Knowledge about the
time-stepper’s numerical algorithms and the ability to rewrite parts of the code were required in
order to obtain a useful computational tool.

The Newton–Picard method works well for problems where the spectrum of the linearized
operator is well separated. Unfortunately, the linearization of the TAY code produces spectra where
many eigenvalues are clustered near 1. However, there appears to be no way to tell a priori whether
a given black-box time-stepper will produce a well-separated spectrum, unless one understands
the details of its computational techniques.

While our results suggest that some information about the time-stepper code and/or its solution
algorithm is required to form a working adapted code, the forgoing discussion is not meant
to suggest that these Newton–Picard methods are of little value. In fact, these methods can be
quite powerful when coupled with a time-stepper code that has been written with the intent of
using it within a Newton–Picard method. The work of Love on the Taylor–Couette problem and
Kolmogorov flows [21] and the work of Tiesinga et al. on the driven cavity problem [22] are
examples where a time-stepper was written specifically to be used in conjunction with these
methods. We conclude that it remains unclear whether these methods can be applied successfully
to an arbitrary large-scale time-stepper code, one that was not written necessarily to take specific
advantage of these Newton–Picard methods.

Our work has illuminated many of the difficulties in adapting an existing time-stepper code by
using the Newton–Picard method. Others who wish to accomplish similar adaptations of time-
steppers using the Newton–Picard method may benefit from our results. In particular, one should
be aware of the following.

1. A small value of �t will cause eigenvalue clustering near 1, regardless of whether an explicit
or implicit method is used in the time-stepper. This clustering presents the most severe
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obstacle for large-scale implementation of the Newton–Picard method, for the following
reasons:

(a) The clustering causes the original iteration scheme to be slowly convergent, since the
rate of convergence is related to the spectral radius of the Jacobian of the iteration map.

(b) The computation of the dangerous eigenvalues via ARPACK is more expensive when the
eigenvalues are clustered. A fixed basis size for P is recommended in this case.

(c) The Q-equations are poorly conditioned when the eigenvalues are clustered around 1,
requiring their solution to be several orders of magnitude more accurate than the con-
vergence criterion of the Newton iteration.

2. Some information about the solution scheme used in the time-stepper must be known to
correctly interpret the eigenvalue information returned by the adapted code. This requires
that connections between eigenvalues of the Jacobian of the iteration map and the stability of
solutions of the original dynamical system be established. For example, we needed to know
the details of the Chorin–Témam projection scheme to correctly identify the iteration map
as a mapping of the velocity field only, rather than the velocity–pressure field.

3. It is an open question whether time-steppers for even larger problems (say N = O(104) or
O(105)) are amenable to adaptation by the Newton–Picard method, even if the eigenvalue
clustering near 1 is not present.

APPENDIX A

In this section, we present some fundamental results from bifurcation and fixed point theory. These
results highlight why time-steppers are poorly suited for performing bifurcation studies and what
properties the modified method should possess to overcome their inherent limitations.

A.1. Equilibrium solutions

Consider again the parameter-dependent dynamical system

du
dt

= f(u, �) (A1)

where for each t , u(t) ∈ RN and f : RN × R → RN . We assume that f is autonomous.
The main result which governs the stability of equilibrium solutions is presented in the following

theorem, which is an amalgamation of [20, Theorems 9.5 and 9.7].
Theorem A.1
If all eigenvalues of the Jacobian matrix fu(u∗, �∗) have negative real parts, then the equilibrium
solution u∗ of (A1) is asymptotically stable. If at least one eigenvalue of fu(u∗, �∗) has positive
real part, then u∗ is unstable.

Note that an equilibrium solution u∗ can lose stability at a bifurcation point as the parameter
� is varied when either a real eigenvalue or a complex conjugate pair of eigenvalues crosses the
imaginary axis, at (generically) a limit point or a Hopf bifurcation point, respectively.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:283–306
DOI: 10.1002/fld



ADAPTING SIMULATION CODES 303

A.2. Mathematics of time-steppers

A time-stepper code to solve Equation (A1) is obtained by a suitable discretization of the temporal
derivative du/dt . After imposing this discretization, we can view the time-stepper as an iterative
mapping of the form

un+1 =F(un, �), F : RN × R → RN (A2)

where the variable n counts the time step. Equilibrium solutions u∗ of (A1) correspond to fixed
points of F and can be approximated by iterating (A2) until the norm ‖un+1 − un‖ of successive
iterates falls below a user-defined tolerance.

The convergence of iteration (A2) is intimately related to the eigenvalues of the Jacobian matrix
Fu(u∗). Indeed, if the spectral radius of the Jacobian matrix is strictly less than one, then the
iteration will converge (locally) to a fixed point u∗ as a consequence of the following more general
result.

Theorem A.2 (Adapted from Krasnosel’skii et al. [23, p. 21])
Let F be an operator from a Banach space into itself and let u∗ be a fixed point of F. If F is Fréchet
differentiable at u∗ and if the spectral radius �(Fu(u∗))<1, then the sequence {un} defined by

un+1 =F(un), n = 0, 1, . . . (A3)

converges to u∗, provided that u0 is sufficiently close to u∗. Moreover, for every 
>0, there exists
a constant C , depending only on u0 and 
 but not on n, such that

‖un − u∗‖�C (�(Fu(u∗)) + 
)n (A4)

Conversely, if the spectral radius �(Fu(u∗))�1, then the sequence {un} defined above does not
converge to u∗.

To establish a connection between bifurcations of equilibrium solutions of (A1) and convergence
properties of the iteration (A2), (see also [24]) note that Theorems A.1 and A.2 show that the
eigenvalues of both Jacobian matrices fu and Fu play critical roles.

If we denote the eigenvalues of fu by {�k} and the corresponding eigenvalues of Fu by
{�k}, k = 1, 2, . . . , N , then the eigenvalues of the two Jacobian matrices are related by

�k = 1 + �t�k (A5)

From this, we obtain the following result which connects the location of eigenvalues of the Jacobian
matrix Fu with stability of equilibrium solutions of (A1).

Proposition A.3
With the above cumulative notation:

(a) Iteration (A2) is convergent if and only if


e(�k)< − �t

2
|�k |2 (A6)
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for all k = 1, . . . , N . In particular, if iteration (A2) is convergent with fixed point u∗, then
the equilibrium solution u∗ of (A1) is stable.

(b) If at least one eigenvalue � of the Jacobian matrix Fu(u∗) has real part 
e(�)>1, then the
equilibrium solution u∗ of (A1) is unstable. Moreover, the equilibrium solution u∗ loses
stability if and only if an eigenvalue � of Fu crosses the line 
e(z)= 1 in the complex
plane.

Notice that the criteria for stability of the equilibrium and of the fixed point iteration are not
identical. If the eigenvalue of the Jacobian fu(u∗) closest to the unstable right half of the complex
plane is real, then this is not an issue, but if (u∗) is a stable equilibrium at which the Jacobian has
a conjugate eigenvalue pair with small negative real part but large complex part, the fixed point
iteration may none-the-less be unstable if �t is too large.

The fact that time-steppers cannot compute unstable solutions follows immediately from part
(a) of Proposition A.3. That the rate of convergence of the time-stepper becomes arbitrarily slow
near bifurcation point follows from the estimate (A4) and the fact that near bifurcation points the
spectral radius of Fu is near 1.

A.3. Time-periodic solutions

Let u∗(t) be a time-periodic solution of (A1) with period T and initial condition u∗(0) =u0.
The stability of u∗(t) is determined by the eigenvalues of the Jacobian matrix /u(u

∗, T ), where
/(u∗, T ) is the flow of the system at a time T with initial condition u∗. This matrix is called
the Monodromy matrix and its eigenvalues are termed Floquet multipliers. The main result which
governs the stability of u∗(t) is given below.

Theorem A.4 (from Seydel [11])
For fixed parameter �, let u∗(t) be a time-periodic solution of (A1) with period T , and let
M denote the Monodromy matrix /u(u

∗, T ). Denote the N Floquet multipliers by �1, . . . , �N ,
repeated according to multiplicity. One of them is identically equal to 1, say �N = 1. The other
N − 1 Floquet multipliers determine the local stability of u∗(t) as follows. If |�k |<1 for all
k = 1, . . . , N −1, then u∗(t) is stable. If at least one Floquet multiplier �k for some k has modulus
greater than 1, then u∗(t) is unstable.

The particular time-stepper for the Taylor–Couette problem we are studying is of the form

un+1 =un + �tf(un, �) ≡F(un, �) (A7)

Finding a time-periodic solution of (A1) amounts to finding a fixed point of the map G=Fk for
some positive integer k, where Fk denotes the k-fold composition of F with itself. The value of k is
chosen so that k�t ≈ T , say k =[T/�t], where [x] represents the greatest integer less than or equal
to x . In our numerical experiments, the value of �t is very small, which makes the corresponding
value of k quite large, typically on the order of several thousand. An alternative and preferrable
strategy (see e.g. [25]) when �t is not required to be small is to fix k and vary �t so as to enable
T to be approximated more exactly.

Eigenvalues of the Jacobian matrix Gu(u∗) are approximations to the Floquet multipliers of
the Monodromy matrix /u(u

∗, T ). A bifurcation occurs if at least one Floquet multiplier crosses
the unit circle in the complex plane. The type of bifurcation depends on the number of Floquet
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multipliers crossing the unit circle and how they cross it [20]. A real Floquet multiplier can cross
at +1 resulting in a turning point in the path of periodic solutions, a real Floquet multiplier can
cross at −1 resulting in a period-doubling bifurcation, or a complex conjugate pair of Floquet
multipliers can cross at e±i� for some value of � that is not an integer multiple of 
 leading to
motion on a torus.
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